(= DALLAS AW Z1 X1 W

1-WIRE® DEVICES MEMORY Jan 09, 2004

App Note 2965: 1-Wire Master Device Configuration

The ‘family-code' embedded in the lasered ROM number of each 1-Wire device signifies a
specific device type. Since each device type has different features and commands, it is
imperative the 1-Wire master knows how to translate this ‘family-code' into the correct
commands. This document presents a method to dynamically configure the 1-Wire master to
correctly communicate with a previously unknown 1-Wire device type by providing the 1-Wire
master with an XML configuration file. This document was originally created to support the IEEE
1451.4 A Smart Transducer Interface for Sensors and Actuators—Mixed-Mode Communication
Protocols and Transducer Electronic Data Sheet (TEDS) Formats standards committee.

Introduction

The ‘family-code' embedded in the lasered ROM number of each 1-Wire device signifies a specific device type. Since
each device type has different features and commands, it is imperative the 1-Wire® master knows how to translate this
'family-code' into the correct commands. Unfortunately, since the ‘family-code' is only an 8-bit value it is impossible to
encode all of the features and commands in it. Instead the 1-Wire master must make this association by different
means. One method is to hardcode this association in the source code of the 1-Wire master. It can then be updated by
rewriting the source code to accommodate new devices. This method is expensive and in some cases impossible thus
relegating some 1-Wire masters to only deal with legacy devices.

This document presents a method to dynamically configure the 1-Wire master to correctly communicate with a
previously unknown 1-Wire device type by providing the 1-Wire master with a configuration file. The 1-Wire master
could be updated with the latest 1-Wire devices by providing a new configuration file. This document describes the
format of one such configuration file utilizing XML. This document was originally created to support the IEEE 1451.4 A
Smart Transducer Interface for Sensors and Actuators - Mixed-Mode Communication Protocols and
Transducer Electronic Data Sheet (TEDS) Formats standards committee.

The appendix proposes a method where a generic family code (for example FD hex) could be differentiated by means
of a read-only configuration memory page on the device. No devices currently implement this method.

Command Notation

It is assumed that each 1-Wire master must come with the ability to search for 1-Wire devices and read the unique
ROM number associated with each device. From the ROM number the 8-bit 'family-code' can be extracted. The 1-Wire
master will then perform 1-Wire operations as defined by this configuration file based on the ‘family-code'. By
examining all 1-Wire device operations, a minimum set of commands was derived. The commands are described in

Table 1 along with a suggested notation. Table 2 describes additional commands that add verification to the command
sequences.

Table 1. Core 1-Wire Commands

NOTATION COMMAND DESCRIPTION

XX Send the following hex byte value to the 1-Wire bus. If this hex byte is within a CRC block then calculate
the CRC on the result of the 1-Wire operation (see verification commands).

{L, delay} Delay for 'L' milliseconds
{M} Select the device with a 1-Wire reset, Match ROM command, and device ROM

http://www.maxim-ic.com/appnotes10.cfm/ac_pk/1/ln/en
http://www.maxim-ic.com/appnotes10.cfm/ac_pk/16/ln/en

{P} Prime 1-Wire power delievery (strong pull-up) or to occur after the next 1-Wire byte
{N} Restore normal pull-up

{U} Issued a 12-volt pulse (used in EPROM programming)
Supply a memory address where 'x' is a number 0,1,...representing the LSbyte to MSbyte. For example
{Ax} '{AOHAL} would specify a 16-bit address with the least significant byte first followed by the most

significant byte.
Data to write to a memory device where the 'x' is a number 0,1,...representing the LSbyte to MSbyte of

{Dx} the data. For example '{D0} {D1} {D2}' is three bytes of data to write. Note the master processing these
commands would place the actual data into the command flow.
Read memory bytes to end of memory. All values read are valid data however now verification is

{R} performed.

Table 2. Verification Commands

NOTATION COMMAND DESCRIPTION

Data to read. This data can be for verification of data written to a memory 1-Wire device or

{dx} result data such as a temperature conversion. Note it is in same format as the {Dx} command
where 'X' is a number indicating the byte number with {d0} being the LShyte.

{T} Success is reading toggling bits such as 0xAA or 0x55.

{00} Success is reading all 0's such as 0x00

{FF} Success is reading all 1's such as OxFF

Start CRC16 calculation by first setting the CRC16 to the provided 'seed' represented in hex
{CRC16,start,seed} notation. All following command bytes will be included in the calculation until the ‘check’
command is found.

Check the CRC16 calculated value to make sure it equals the provided hex 'value'. If it is not
then this is a failure. The CRC16 calculation can be stopped after the check.

Start CRCS8 calculation by first setting the CRC8 to the provided 'seed' represented in hex
{CRCS8,start,seed} notation. All following command bytes will be included in the calculation until the ‘check’
command is found.

{CRC16,check,value}

Check the CRC8 calculated value to make sure it equals the provided hex 'value'. If it is not

(EREaErEgEls) then this is a failure. The CRC8 calculation can be stopped after the check.

See Figure 1 to see an example command sequence to read the scratchpad of the DS18B20.

Command Sequence
{M} BE {CRCB8,start,0} {d0} {d1} FF FF FF FF FF FF FF {CRC8.check, 0x00}

1-Wire Master Translation

{1 Send 1-Wire reset, Match ROM command and ROM number
BE Send 0xBE (Read ScratchPad) command

{CRCS8, start,0x00} Initialize the CRCS to 0, begin CRCS8 calculation

{dO} {d1} Read the temperature by sending OxFF OxFF. Calculate CRCB
FF FF FF FF FE FiF FF Read rest of scratchpad. Calculate CRCE on each byte result
{CRC8, check, 0x00} Check CRCE value. If it is 0x00 then SUCCESS.

Figure 1. DS18B20 Read Temperature Command Sequence and 1-Wire Master Translation.

Device Types

The general types of 1-Wire devices covered by this document are Memory, Switch, and Temperature.

The Memory device has some kind of data storage memory area. It may be write-once but must support multiple reads.
It is often arranged in pages and is usually written a page at a time. A Memory device may have multiple banks of

memory with different attributes.

The Switch device can control a latch. The latch may connect the output to ground (lowside) or to the communication
channel (highside). Some Switch devices can also sense voltage. A Switch device can have multiple channels.

The Temperature device returns a temperature value in Celsius. The result is a signed value representing temperature
units. The unit conversion to Celsius is provided.

Each device type contains one or more standard operations. For example each Temperature device has a 'read'
operation. Table 3 shows the standard operations and attributes of each device type.

Table 3. Device Operations and Attributes by Type

DEVICE TYPE| OPERATIONS ATTRIBUTES

Memory Read Read/Write/ReadOnly/WriteOnce
Write Starting physical address
Number of pages
Page length in bytes

Switch Read Latch HighSlde/LowSide
Enable Latch
Disable Latch
Read Level (optional)

Temperature Read Min Temperature
Max Temperature
Step (unit of Celsius returned from Read)

The 'Setup’ operation is also included in any of the device type descriptions. A 'Setup' is a command sequence that
readies the device for operation. For any of the 'Read' operation there are also two attributes '‘AndMask’ and 'Polarity’.
The 'AndMask’ is a hex value that is bitwise anded with the result data described in the command sequence with {d0}.
The 'Polarity’ indicates that the operation is "'TRUE"' if it matches the resulting value from the 'AndMask’. For example
when reading the latch state (Read Latch) of a DS2406 channel A, the AndMask="0x01" and Polarity="0x00". So the
value read from the command sequence is bitwise anded with 0x01 and if the result is 0, the latch is ON.

Configuration Format

The XML syntax was selected for the example configuration file format. Since XML is so 'eXtensible' it was easy to
incorporate the device types, operations, attributes and the actual command sequences into a human readable format.
The overall 'tag’ for grouping these descriptions was . Within this group are individual device descriptions with a
specified family code attribute, for example: . Each device group can contain , , or groups that correspond to the device
types already described. Note that some devices may have more then one channel and group. For example the
DS2406 has both memory and switch groups since it incorporates both of these features. See the Figure 2 in the
appendix for an example XML file describing six different 1-Wire devices. Two of these devices are memory, two are
switches, and two are temperature devices.

Examples

<?xm version="1.0" encodi ng="UTF-8"?>

<l-- The device description file follows the schema defined in ??? and

def i nes devi ces DS2433, DS2430, DS2406, DS2409, DS18S20, DS1920 and DS18B20. - - >
<Devi ceDescri ptions xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena-i nst ance"

xsi : noNamespaceSchenmalLocati on="\ Devi ce Schema\ Devi ce Schema. xsd" >

<Devi ceDescri pti ons>
<Devi ce Fani | yCode="0x23">

<Descri pti on>
DS2433, 4kbit EEPROM
</ Descri ption>

<MenoryBank attributes="ReadWite">
<Descri pti on>

Mai n Menory
</ Descri ption>

<St art Addr ess> 0x0000 </ St art Addr ess>
<Pages> 16 </ Pages>
<PagelLengt h> 32 </ PagelLengt h>

<Wite>

<WiteScrat chPad>
{M {CRC16, start, 0}
OF {A0} {A1l}
{po} {D1} {D2} {D3} {D4} {D5} {D6} {Dr}
{D8} {D9} {D10} {D11} {Di12} {D13} {D14} {D15}
{D16} {D17} {D18} {D19} {D20} {D21} {D22} {D23}
{D24} {D25} {D26} {D27} {D28} {D29} {D30} {D31}

FF FF { CRC16, check, 0xB001}
</ WiteScrat chPad>
<CopyScr at chPad>
{M 55 {A0} {Al} {P} 1F {L,10} {N} {T}
</ CopyScr at chPad>
</Wite>

<Read>
<ReadMenory>
{M FO {A0} {Al} {R}
</ ReadMenor y>
</ Read>

</ Menor yBank>
</ Devi ce>

<Devi ce Fami | yCode="0x14">
<Descri pti on>
DS2430A, 32-byte EEPROM with | ocking register
</ Descri pti on>

<MenoryBank attributes="ReadWite">
<Descri pti on>
Mai n Menory
</ Descri pti on>

<St art Addr ess> 0x0000 </ St art Addr ess>
<Pages> 1 </ Pages>
<PagelLengt h> 32 </ PagelLengt h>

<Wite>
<W it eScr at chPad>
{M OF {A0}
{oo} {D1} {D2} {D3} {D4} {D5} {D6} {D7}

{D8} {D9} {D10} {D11} {D12} {D13} {D14} {D15}
{D16} {D17} {D18} { D19} {D20} {D21} {D22} {D23}
{D24} {D25} {D26} {D27} {D28} {D29} {D30} {D31}
</ WiteScrat chPad>
<ReadScr at chPad>
{M AA {AC}
{do} {di} {d2} {d3} {d4} {d5} {d6} {d7}
{d8} {d9} {di0} {di1} {di2} {di3} {di4} {d15}
{d16} {di17} {di8} {d19} {d20} {d21} {d22} {d23}
{d24} {d25} {d26} {d27} {d28} {d29} {d30} {d31}
</ ReadScr at chPad>
<CopyScr at chPad>
{M 55 {P} A5 {L,20} {N}
</ CopyScr at chPad>
</Wite>

<Read>
<ReadMenory>
{M FO {A0} {R}
</ ReadMenor y>
</ Read>

</ Menor yBank>
<MenoryBank attributes="WiteOnce">
<Descri pti on>
Application Register
</ Descri pti on>

<St art Addr ess> 0x0000 </ St art Addr ess>
<Pages> 1 </ Pages>
<PagelLengt h> 8 </ PagelLengt h>

<Wite>
<Wit eAppReg>
{M 99 {A0}
{Do} {D1} {D2} {D38} {D4} {D5} {D6} {Dr}
</WiteAppReg>
<ReadAppReg>
{M G {A0}
{d0} {di} {d2} {d3} {d4} {d5} {d6} {d7}
</ ReadAppReg>
<CopyAndLock>
{M S5A {P} A5 {L, 20} {N
</ CopyAndLock>
</Wite>

<Read>
<ReadAppReg>
{M &G {A0} {R
</ ReadAppReg>
</ Read>
</ Menor yBank>
</ Devi ce>

<Devi ce Fam | yCode="0x12">
<Descri pti on>
DS2406, dual channel switch with 1kbit EPROM

</ Descri pti on>

<MenoryBank attributes="WiteOnce">
<Descri pti on>
Mai n Menory
</ Descri pti on>

<St art Addr ess> 0x0000 </ Start Addr ess>
<Pages> 4 </ Pages>
<PagelLengt h> 32 </ PagelLengt h>

<Wite>
<WiteScrat chPad>
{M {CRC16, start, 0}
OF {A0} {Al} {DO0}
FF FF { CRC16, check, 0xB001}
</ Wi teScrat chPad>
<Pr ogr an»
{U}
</ Progr anp
<ReadVerify>
{dO}
</ ReadVeri fy>
</Wite>

<Read>
<ReadMenory>
{M FO {A0} {Al} {R}
</ ReadMenor y>
</ Read>

</ Menor yBank>
<Swi t chChannel attri butes="LowSi de">
<Descri pti on>
PIO A
</ Descri pti on>

<ReadLat ch AndMask="0x01" Pol arity="0x00">
{M {CRC16, start, 0}
F5 55 FF {dO}
FF FF {CRC16, check, 0xB001}

</ ReadLat ch>

<ReadLevel AndMask="0x04" Pol arity="0x04">
{M {CRC16, start, 0}
F5 55 FF {d0}
FF FF { CRC16, check, 0xB001}

</ ReadLevel >

<Enabl eLat ch>

{M {CRC16, start, 0}

F5 05 FF 00

FF FF { CRC16, check, 0xB001}
</ Enabl eLat ch>

<Di sabl eLat ch>
{M {CRC16, start, 0}

F5 05 FF FF
FF FF {CRC16, check, 0xB001}
</ Di sabl eLat ch>

</ Swi t chChannel >

<Swi t chChannel attri butes="LowSi de">
<Descri pti on>
PIOB
</ Descri pti on>

<ReadLat ch AndMask="0x02" Pol arity=¢g0x00eh>
{M {CRC16, start, 0}
F5 55 FF {dO}
FF FF {CRC16, check, 0xB001}

</ ReadLat ch>

<ReadLevel AndMask="0x08" Pol arity="0x08">
{M {CRC16, start, 0}
F5 55 FF {dO}
FF FF {CRC16, check, 0xB001}

</ ReadLevel >

<Enabl eLat ch>

{M {CRC16, start, 0}

F5 09 FF 00

FF FF { CRC16, check, 0xB001}
</ Enabl eLat ch>

<Di sabl eLat ch>

{M {CRC16, start, 0}

F5 09 FF FF

FF FF { CRC16, check, 0xB001}
</ Di sabl eLat ch>

</ Swi t chChannel >
</ Devi ce>

<Devi ce Fam | yCode="0x1F">
<Descri pti on>
DS2409, 1-Wre Coupler
</ Descri pti on>

<Swi t chChannel attri butes="Hi ghSi de">
<Descri pti on>
Mai n
</ Descri ption>

<ReadLat ch AndMask="0x01" Pol arity="0x00">
{M 5A 18 {dO}
</ ReadLat ch>

<ReadLevel AndMask="0x02" Pol arity="0x02">
{M 5A 18 {d0}
</ ReadLevel >

<ReadActivity AndMask="0x10" Pol arity="0x10">
{M 5A 18 {d0}

</ ReadActivity>

<Enabl eLat ch>
{M A5 FF
</ Enabl eLat ch>

<Di sabl eLat ch>
{M 66 FF
</ Di sabl eLat ch>
</ Swi t chChannel >

<Swi t chChannel attri butes="Hi ghSi de">
<Descri pti on>
Auxi | ary
</ Descri pti on>

<ReadLat ch AndMask="0x04" Pol arity=¢g0x00eh>
{M 5A 18 {d0}
</ ReadLat ch>

<ReadLevel AndMask="0x08" Pol arity="0x08">
{M 5A 18 {dO}
</ ReadLevel >

<Enabl eLat ch>
{M 33 FF FF FF
</ Enabl eLat ch>

<Di sabl eLat ch>
{M 66 FF
</ Di sabl eLat ch>
</ Swi t chChannel >
</ Devi ce>

<Devi ce Fam | yCode="0x10">
<Descri pti on>
DS18S20/ DS1920, fixed resol ution tenperature
</ Descri pti on>

<Tenper at ur eChannel mni n="-55" pax="125" step="0.5">
<Read>
<Recal | >
{M B8
</ Recal | >
<Conver si on>
{M {P} 44 {L, 750} {N} {FF}
</ Conver si on>
<Resul t >
{M BE {CRC8,start,0} {dO} {di}
FF FF FF FF FF FF FF { CRC8, check, 0x00}
</ Resul t >
</ Read>
</ Tenper at ur eChannel >
</ Devi ce>

<Devi ce Fani | yCode="0x28">
<Descri pti on>

DS18B20, hi gh-resol ution tenperature
</ Descri ption>

<Tenper at ur eChannel m n="-55" max="125" step="0.0625">
<Set up>
<W it eScat chPad>
{M 00 00 7F
</ Wit eScat chPad>

<CopyScat chPad>
{M {P} 48 {L, 10} {N
</ CopyScat chPad>
</ Set up>

<Read>
<Recal | >
{M B8
</ Recal | >
<Conver si on>
{M {P} 44 {L, 750} {N} {FF}
</ Conver si on>
<Resul t >
{M BE {CRC8,start,0} {d0} {di}
FF FF FF FF FF FF FF { CRC8, check, 0x00}
</ Resul t >
</ Read>
</ Tenper at ur eChannel >
</ Devi ce></ Devi ceDescri pti ons>

Figure 2. Example XML Configuration File for Six 1-Wire Devices
XML Device Description Schema

The device description schema provides a template to add support for new devices to their systems. The schema
defines devices that support memory, switching, and temperature reading.

<?xm version="1.0" encodi ng="UTF-8"?>
<l-- The | EEE 1451.4 XM. devi ce description schenma provides a tenplate for manufacturers
and
users of the | EEE14514 to add support for new devices to their systens. The schena
defi nes
devi ces that support nenory, switching and tenperature reading. -->
<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_.Schema" el enent For mDef aul t ="qual i fi ed">
<xs: el enent nanme="Conversi on" type="xs:string"/>
<xs: el enent nanme="CopyAndLock" type="xs:string"/>
<xs: el enent name="CopyScat chPad" type="xs:string"/>
<xs: el enent name="CopyScr at chPad" type="xs:string"/>
<xs: el enent name="Description" type="xs:string"/>
<xs:conpl exType nanme="| EEE1451 Dot 4Devi ceType" >
<XS:sequence>
<xs: el enment ref="Description"/>
<xs: el enent nanme="Menor yBank" type="MenoryBankType" ni nCccurs="0"
maxQccur s="unbounded"/ >
<xs: el enent nanme="Swi tchChannel " type="Sw t chChannel Type"
m nCccur s="0"

maxCccur s="unbounded"/ >
<xs: el enent nane="Tenper at ureChannel " type="Tenper at ur eChannel Type"
m nCccurs="0"/>
</ Xxs: sequence>
<xs:attribute name="Fam | yCode" use="required">
<xs: si mpl eType>
<xs:restriction base="xs: NMTOKEN" >
<xs:enuneration val ue="0x10"/>
<xs:enuneration val ue="0x12"/>
<xs:enuneration val ue="0x14"/>
<xs:enuneration val ue="0x1F"/>
<xs:enuneration val ue="0x23"/>
<xs:enuneration val ue="0x28"/>
</ xs:restriction>
</ xs: si npl eType>
</xs:attribute>
</ xs: conpl exType>
<xs: el enent name="Devi ceDescripti ons">
<xs:conpl exType>
<XS: seguence>
<xs: el enent nanme="Devi ce" type="|EEE1451_ Dot 4Devi ceType"
maxQccur s="unbounded"/ >
</ Xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el enent nanme="D sabl eLatch" type="xs:string"/>
<xs: el enent nanme="Enabl eLat ch" type="xs:string"/>
<xs: conpl exType nane="Menor yBankType" >
<Xs:sequence>
<xs: el enment ref="Description"/>
<xs: el enment ref="StartAddress"/>
<xs: el ement ref="Pages"/>
<xs: el enent ref="PagelLength"/>
<xs:element nane="Wite" type="WiteType"/>
<xs: el ement nane="Read" type="ReadType"/>
<xs: el enment name="CRCI nf or mati on" m nCccurs="0">
<xs: conpl exType>
<xs:sequence maxQccur s="unbounded" >
<xs: el enent name="CRCSt art Bi t PageLocat i on"
type="xs: unsi gnedLong"/ >
<xs: el enent name="CRCBi t Lengt h"
type="xs: unsi gnedLong"/ >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
</ Xxs: sequence>
<xs:attribute nane="attributes" use="required">
<xs: si npl eType>
<xs:restriction base="xs: NMTOKEN" >
<xs:enuneration val ue="ReadWite"/>
<xs:enuneration val ue="WiteOnce"/>
</ xs:restriction>
</ xs: si npl eType>
</xs:attribute>
</ xs: conpl exType>
<xs: el enent name="PagelLengt h" type="xs:unsi gnedLong"/ >

<xs: el enent nanme="Pages" type="xs:unsignedLong"/>
<xs: el enent name="Progrant type="xs:string"/>
<xs: conpl exType nane="ReadType" >
<Xs:sequence>
<xs: el enent ref="ReadMenory" m nCccurs="0"/>
<xs: el enent ref="ReadAppReg" m nCccurs="0"/>
<xs:elenment ref="Recall" m nCccurs="0"/>
<xs: el ement ref="Conversion" m nCccurs="0"/>
<xs:elenment ref="Result" m nQOccurs="0"/>
</ xs: sequence>
</ xs: conpl exType>
<xs:conpl exType name="ReadActivityType">
<xs: si npl eCont ent >
<xs: extensi on base="xs:string">
<xs:attribute nanme="AndMask" type="xs:string"
use="required"/>
<xs:attribute name="Pol arity" type="xs:string"
use="required"/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
<xs: el enent nanme="ReadAppReg" type="xs:string"/>
<xs: conpl exType nane="ReadLatchType">
<xs: si npl eCont ent >
<xs: extensi on base="xs:string">
<xs:attribute nanme="AndMask" use="required">
<xs: si nmpl eType>
<xs:restriction base="xs: NMTOKEN" >
<xs:enuneration val ue="0x01"/>
<xs:enuneration val ue="0x02"/ >
<xs:enuneration val ue="0x04"/>
</xs:restriction>
</ xs: si npl eType>
</xs:attribute>
<xs:attribute name="Pol arity" type="xs:deciml"
use="required"/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
<xs: conpl exType nane="ReadLevel Type">
<xs: si npl eCont ent >
<xs: ext ensi on base="xs:string">
<xs:attribute name="AndMask" use="required">
<xs:si nmpl eType>
<xs:restriction base="xs: NMTOKEN" >
<xs:enuneration val ue="0x02"/ >
<xs:enuneration val ue="0x04"/>
<xs:enuneration val ue="0x08"/>
</xs:restriction>
</ xs: si npl eType>
</xs:attribute>
<xs:attribute nane="Pol arity" use="required">
<xs: si mpl eType>
<xs:restriction base="xs: NMTOKEN" >
<xs:enuneration val ue="0x02"/>
<xs:enuneration val ue="0x04"/>

</ xs: si npl eCont ent >
</ xs: conpl exType>

<xs:enuneration val ue="0x08"/>
</Xxs:restriction>
</ xs: si npl eType>

</ xs:attribute>
</ xs: ext ensi on>

<xs:el enent nanme="ReadMenory" type="xs:string"/>
<xs: el enent nanme="ReadScrat chPad" type="xs:string"/>
<xs: el enent name="ReadVerify" type="xs:string"/>
<xs: el enent nanme="Recal | " type="xs:string"/>
<xs: el enent name="Result" type="xs:string"/>
<xs: conpl exType nanme="Set upType" >

<XS:sequence>

<XS:
<XS:

el enent
el enent

</ Xxs: sequence>

</ xs: conpl exType>

ref="WiteScat chPad"/>
r ef =" CopyScat chPad"/ >

<xs:el enent name="Start Address" type="xs:string"/>
<xs: conpl exType nane="Sw t chChannel Type">
<Xs:sequence>

<xs: el enent ref="Description"/>

<xs: el enment nane="ReadLat ch" type="ReadLat chType"/>

<xs: el ement nanme="ReadLevel" type="ReadLevel Type"/>

<xs: el ement name="ReadActivity" type="ReadActivityType"
m nCccurs="0"/>

<xs: el ement ref="Enabl eLatch"/>

<xs: el enent ref="D sabl eLatch"/>

</ Xxs: sequence>

<xs:attribute name="attributes" use="required">
<xs: si mpl eType>

<xs:restriction base="xs: NMTOKEN'" >

<xs:enuneration val ue="Hi ghSi de"/ >
<Xs:enuneration val ue="LowSi de"/ >

</xs:restriction>
</ xs: si npl eType>
</ xs:attri bute>

</ xs: conpl exType>
<xs:conpl exType name="Tenper at ur eChannel Type" >
<XS:sequence>

<xs: el enent nanme="Set up" type="SetupType"
<xs: el ement nane="Read" type="ReadType"/>

</ Xxs: sequence>

m nCccurs="0"/>

<xs:attribute name="min" type="xs:byte" use="required"/>
<xs:attribute name="nmax" type="xs:byte" use="required"/>

<xs:attribute name="step" use="required">
<xs: si mpl eType>

<xs:restriction base="xs: NMTOKEN" >

<xs:enuneration val ue="0.0625"/>
<Xs:enuneration val ue="0.5"/>

</xs:restriction>
</ xs: si npl eType>
</xs:attribute>
</ xs: conpl exType>
<xs:conpl exType name="WiteType">
<XS:sequence>

<xs:elenment ref="WiteScratchPad" m nCccurs="0"/>
<xs: el enent ref="ReadScratchPad" m nCccurs="0"/>
<xs: el enent ref="CopyScratchPad" m nCccurs="0"/>
<xs:elenment ref="WiteAppReg" ni nCccurs="0"/>
<xs: el enent ref="ReadAppReg" m nCccurs="0"/>
<xs: el ement ref="CopyAndLock"” m nOccurs="0"/>
<xs: el ement ref="Program' m nCccurs="0"/>
<xs: el enent ref="ReadVerify" m nCccurs="0"/>
</ Xxs: sequence>

</ xs: conpl exType>

<xs: el ement nanme="WiteAppReg" type="xs:string"/>

<xs: el enment nanme="WiteScat chPad" type="xs:string"/>

<xs: el enment nane="WiteScratchPad" type="xs:string"/>

</ xs: schema>

Figure 2. XML Device Description Schema.

Appendix
Memory Configuration Page

The following general memory description describes an idealized memory device with a configuration page that
provides all of the necessary information to utilize the remaining memory space. The configuration page could provide
the device type differentiation that is currently implemented with the ROM family code but with more information
conveyed. A common generic family code (for example FD hex) could be used for all devices with this configuration

page.

All 1-Wire memory devices support the Read Memory command (FO hex), and with the exception of the DS2430A, it
requires 2 address bytes. For this example the Read Memory command will be used to retrieve the configuration page
information at a fixed address of FF7F hex. The memory location will have a length byte, 26 bytes of data followed by
an inverted CRC16 for validation. Table Al provides the bit-level details of the configuration page format.

Table Al. Configuration Page Format

BYTE OFFSET NAME CONTENT

0 Length Length of data in the configuration page (fixed at 26)

1 General_Flags Bit 0 Memory type (1 EEPROM, 0 EEPROM)
Bit 1 Scratchpad erased on read-memory (1 YES, 0 NO)
Bit 2 Device has read page with CRC16 (1 YES, 0 NO)

Device has write-once mode like pseudo EPROM (1 YES, 0 NO)
(EEPROM only)

Bit 4 Device has map of used pages (1 YES, 0 NO)
Bit 5 not used 0
Bit 6 not used 0
Bit 7 not used 0

2 WriteProt_Flags Bit O Individual page write-protect (1 YES, 0 NO)
Bit 1 Global device write-protect (1 YES, 0 NO)

Write protect register is organized with one page per bit (1 YES, 0 NO).
If not then one page per byte

Bit 3

Bit 2

Bit 3 not used 0
Bit 4 not used 0
Bit 5 not used 0
Bit 6 not used 0
Bit 7 not used 0
3 CRC_Flags Bit 0 Write scratchpad has CRC16 (1 YES, 0 NO)
Bit 1 Read scratchpad has CRC16 (1 YES, 0 NO)
Bit 2 Read special memory command has CRC16 (1 YES, 0 NO)
Bit 3 not used O
Bit 4 not used 0
Bit 5 not used O
Bit 6 not used 0
Bit 7 not used 0

4 Scratchpad_Length Length of scratchpad in bytes (EEPROM only)

5 Page_Length Length of normal memory page in bytes

6 Pages Number of pages (2 bytes)

8 Special_Pages Number of special function pages

9 Special_Page_Length Length of special memory page in bytes

10 ReadScratch_ CMD Read scratchpaf command

11 Write_ CMD Write command (scratchpad for EEPROM)

12 CopyScratch_ CMD Copy scratchpad command

13 ReadPageCRC_CMC Read page of memory with CRC16 command

14 ReadSpecial CMD Read special memory page command

15 Write_Special_ CMD Write special memory command

16 WriteProt_Addr Address of write-protect registers in special memory. (2 bytes)

18 WriteProtDev_Addr Address of write-protect entire device register in special memory. (2 bytes)
20 WriteOnce_Addr th(i;e)ss to write-once mode (pseudo EPROM) flag in special memory. (2
22 UsedPgs_Addr Address in special memory for map of used pages. (2 bytes)

24 UsedPgs_Offset Bit offset of the map of used pages

25 WriteProt_Value Value written to special memory register to write-protect a page.

26 WriteOnce_Value Z:éli% (\;erit;eF? ot(|z/| .special memory register to make a page write-once like
27 CRC16 Bitwise inverted CRC16 of bytes 0 to 24, LSByte first. (2 bytes)

The following table lists the operations that will be described by the configuration page.

Table A2. Operations

OPERATION EEPROM|EPROM DESCRIPTION

Read Memory Read memory with device generated CRC
Read Page with CRC X X Read a page of memory with device generated CRC
Write Scratchpad X Write the scratchpad in preparation of writing ot memory

Read Scratchpad X Read the scratchpad to verify the write was correct

Copy Scratchpad X Copy the scratchpad to the final memory location

Write Memory X Write a byte to memory

Read speical page with CRC X Read a page of special memory with device generated CRC
Write special byte X Write a byte to the special memory

Write protect page X X Write protect a page

Set page for write-once X Set an EEPROM page to be write-once like (pseudo EPROM)
Calculate Free Pages « Calculate the number of free pages in an EPROM device by

looking at the map of used pages.

X supported by all devices of this type
X supported by some devices of this type
<blank> generally not supported by devices of this type

Operations Detail

The operations detail listed in Table A2 can be implemented with the details provided by the configuration page. This
section provides the sequence and data fields to use to implement the operations.

Read Memory

- 1-Wire reset and presence

- ROM level command sequence (read/search/match/overdrive match/overdrive skip)
- Write ReadMemory command (FO hex)

- Write first address byte TA1, LSByte

- Write second address byte TA2, MSByte

- Read data

Read Page with CRC
- If General_Flags.Bit2 = 1

1-Wire reset and presence
- ROM level command sequence (read/search/match/overdrive match/overdrive skip)
- Write ReadPageCRC_CMD
- Write first address byte TA1, LSByte
- Write second address byte TA2, MSByte
- Read Page_Length bytes (unless address is not at page beginning)
- Read bitwise inverted CRC16

Write Scratchpad
- If General_Flags.Bit0 = 1

1-Wire reset and presence
- ROM level command sequence (read/search/match/overdrive match/overdrive skip)
- Write Write_CMD
- Write first address byte TA1, LSByte
- Write second address byte TA2, MSByte
- Write data bytes

- If CRCFlags.Bit0 = 1 AND at end of page
- Read bitwise inverted CRC16

Read Scratchpad
- If General_Flags.Bit0 = 1

1-Wire reset and presence
- ROM level command sequence (read/search/match/overdrive match/overdrive skip)
- Write ReadScratch_ CMD
- Read first address byte TA1, LSByte
- Read second address byte TA2, MSByte
- Read offest and status flags ES
- Read data bytes
- If CRCFlags.Bitl = 1 AND at end of page

- Read bitwise inverted CRC16

Copy Scratchpad
- If General_Flags.Bit0 = 1

1-Wire reset and presence
- ROM level command sequence (read/search/match/overdrive match/overdrive skip)
- Write CopyScratch_CMD
- Write first address byte TA1, LSByte
- Write second address byte TA2, MSByte
- Write offset and status flags ES
- Strong pullup applied to 1-Wire for a minimum of 10ms
- Read confirmation byte (should be AA or 55)

Write Memory
- If General_Flags.Bit0 =0

1-Wire reset and presence
- ROM level command sequence (read/search/match/overdrive match/overdrive skip)
- Write Write_ CMD
- Write first address byte TA1, LSByte
- Write second address byte TA2, MSByte
- Write data byte to write
- Read bitwise inverted CRC16 of command, address, and data (first pass) or address and data (second pass)
- Apply 480 ps 12V programming pulse on the 1-Wire
- Read confirmation data byte (should OR of old data and current data bytes)
- If next address to write is sequential then can send the next data byte...

Read Special Page with CRC
- If General_Flags.Bit2 = 1

1-Wire reset and presence
- ROM level command sequence (read/search/match/overdrive match/overdrive skip)
- Write ReadSpecial_CMD
- Read first address byte TA1, LSByte
- Read second address byte TA2, MSByte

- Read Special_Page_Length bytes (unless address is hot at page beginning)
- Read bitwise inverted CRC16

Write Special Byte
- If General_Flags.Bit0 =0

1-Wire reset and presence

- ROM level command sequence (read/search/match/overdrive match/overdrive skip)

- Write Write_Special CMD

- Write first address byte TA1, LSByte

- Write second address byte TA2, MSByte

- Write data byte to write

- Read bitwise inverted CRC16 of command, address, and data (first pass) or address and data (second pass).
Apply 480 ps 12V programming pulse on the 1-Wire

- Read confirmation data byte (should OR of old data and current data bytes)

- If next address to write is sequential then can send the next data byte...

Write Protect Page
- If WriteProt_Flags.Bit0 = 1

If WriteProt_Flags.Bit2 = 1
- Address = WriteProt_Addr + Page / 8
- Data = WriteProt_Value Rotate left Remainder (Page / 8)
- Else
- Address = WriteProt_Addr + Page
- Data = WriteProt_Value
- Write Special Byte with Address and Data.

Set Page for Write-Once
- If General_Flags.Bit3 =1

Address = WriteOnce_Addr
- Data = WriteOnce_Value
- Write Special Byte with Address and Data

Mark Page Used
- If General_Flags.Bit4 = 1

Address = UsedPgs_Addr + (Page + UsedPgs_Offset)/ 8
- Data = Bitinverse (1 Rotate left Remainder ((Page + UsedPgs_Offest)/ 8)
- Write special byte at Address and Data

Calculate Free Pages
- If General_Flags.Bit4 = 1

Address = UsedPgs_Addr
- Read special page with CRC starting at Address until (Special_Pages / 8) number of bytes read
- Count the number of 1's in the bytes read, this is the number of free pages

Table A3 provides example configuration pages using existing devices as a template. Note however, these devices do
not currently contain the configuration page.

Table A3. Example Configuration Pages

Key

=
X single numbers are binary (0 or 1) I:u
XX double numbers are in hex a|l 2| 2| a2z @
2l 2| 8| BEEEE
L =] = = w2
L] o] @ 5= 2
£ B
MNama Content
[Langth Length of data in the configuration page) 14 1 1A
1 ﬂell-:,—:ral_l-lagﬁ Bit 0 Mt,—:rnury type (1 EEPROM, O 0] 1 1
EPRCM)
Bit 1 Scratchpad erased on read- 0 0 1
memary (1 YES, 0 NO)
Bit 2 Device has read page wilh
CRC16 (1 YES, 0 NO)
Bit 3 [Cevice has wrile-once mode a
like pseudo EPROM (1 YES, O
M) (EEPRCM only)
Bit 4 Device has map of used pages
(1 YES 0 NG
Bit 5 not used 0 i
Bil & nol used 0 0
Bil 7 not used 0 0
2 | WriteProt_Flags Bit 0 | Individual page write-protect (1 1
YES, 0 NO)
Bit 1 Global device write-profect (1 0
YES, O NQj)
Bit2 | VWnte protect register s 1
organized wath one page per
bit {1 YES. 0 NOJ. If no then is
one page per byle
Bit 3 not used 0 0 0 0 0 0 0
Bil 4 ot used 0 0 {0 0 0 1] 0
| Bit5 | not used 0 o _lo 1o lo lo 1o
Bit § not used 0 0] 0 0 0 0
Bit 7 not used 0 0 0 0 0 0 0
3 | CRC_Flags Bit 0 Wle scralchpad has CRCI6 | 1 0 0 0 1 1
(1 YES, 0 NC)
Bit 1 Read scralchpad has CRC1G 0 0
(1 YES, 0 NO)
Bit 2 Read special ITHETIONY 1
command has CRC16 {1 YES
0 WO
Bit 3 not used 0 0 0
Bil 4 nol used 0 0 0
Bit 5 not used 0 0 0
Bit & not used 0 0 0
Bit 7 not used 0 0 0
4 Scralchpad_Lenglh | Length of scralchpad in byles 0 oo
{EEFROM only)
5 Page_Length Length of normal memory page in byles 20
G Fages Mumber of pageas 0o
01
8 Special Pages Number of special lunclion pages 0B
[t Special_Page_Leng | Length of special memory page in bytes 03
1]
10 | ReadScratch CMD | Read scratchpad command 00
11 | Wirile_CMD Wirite command (scralchpad for OF
EEPROM)
12 | CopyScratch CMD | Copy scratchpad command LA]¢]
13 | ReadPageCRC_CM | Read page of memorny, with CRC1G AS A5
D command
14 | ReadSpeacizl CMD Read special memaory pane command Ay LYY
15 | Wite Spedial CMD | Write special memory conmand 55 835
16 | WriteP rot_saddr Address of write-proted registers in 00 |00 |00
special memony. (2 byles 00 [00 |00
18 | WrileProlDev_Addr | Address of wrile-protec) entire device 00 00 0o
register in s pecal memaory. (2 byles) L 00 0ad
20 | WiteOnce_Addr Address o write-once node (pseudo 00 |00 |00
EPROM) flag in specidl mamory. (2 00 (00 |00
Dyleg)
22 | UsedPygs_Addr Address in special mamory for map of [11] 40 40
1 iicesrd mvarnse 19 Feaoalose 1 0 s’ fala!

[0

[0

oo

20 | Writeince_Addr Address to write-once node (pseudo | 00 | 00 | 00
EFROM) flag in specidl memory. (2| 00 |00 |00 |00 |00 |20
bylas)

22 | UsedPgs_Addr Address in special merory for map of | 00 | 00 | 40 40 | 00 | OO
used pages . (2 byles) D0 |00 | 00 |00 00) oo

24 | UsedPgs Offset Bit offset of the map of wed pages 00)04]O0 J00 JO0)OO0

25 | WriteP rot_Value Value writlten to special memory | 00 |00 | 00 | 0O 55 | 55
reqister to write-protect apage

26 | WriteCince_Yalua Walue wrilten (o special memory | 00 00 00 0g Ad | AR
register 10 make a page vwiile-once like
pseudo EPROM

27 | CRCI1G Bitwise inverted CRC16 of byles 0 o | xx xx | m | xx x| xX
24, LSByle first. {2 byles a0 XN we | owx L

1-Wire is a registered trademark of Dallas Semiconductor.

More Information

DS2430A: QuickView -- Full (PDF) Data Sheet -- Free Samples

http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2913/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2430A.pdf
http://www.maxim-ic.com/samplescart.cfm?Action=Add&PartNo=DS2430A&ln=en

